investing the pattern - translation to αραβικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

investing the pattern - translation to αραβικά

BEHAVIORAL DESIGN PATTERN
Command Pattern; The command pattern
  • UML diagram of the command pattern

investing the pattern      
‎ تَكْسِيَةُ النَّموذج‎
investing the pattern      
تَكْسِيَةُ النَّموذج
dress pattern         
  • Digital home sewing pattern
  • Marker-making by computer
  • Student tracing pattern onto fabric
  • Fitting a nettle/canvas-fabric on a [[dress form]]
  • Storage of patterns
  • Students cutting patterns in a sewing class
TEMPLATE FROM WHICH THE PARTS OF A GARMENT ARE TRACED ONTO FABRIC BEFORE BEING CUT OUT
Pattern making book; Pattern-making book; Patternmaking book; Sewing pattern; Dress pattern; Dress-maker's pattern; Pattern cutting; Pattern drafting; Pattern making
نموذج من الورق تقص السيدة قماش الفستان مثله

Ορισμός

pattern recognition
<artificial intelligence, data processing> A branch of artificial intelligence concerned with the classification or description of observations. Pattern recognition aims to classify data (patterns) based on either a priori knowledge or on statistical information extracted from the patterns. The patterns to be classified are usually groups of measurements or observations, defining points in an appropriate multidimensional space. A complete pattern recognition system consists of a sensor that gathers the observations to be classified or described; a feature extraction mechanism that computes numeric or symbolic information from the observations; and a classification or description scheme that does the actual job of classifying or describing observations, relying on the extracted features. The classification or description scheme is usually based on the availability of a set of patterns that have already been classified or described. This set of patterns is termed the training set and the resulting learning strategy is characterised as supervised. Learning can also be unsupervised, in the sense that the system is not given an a priori labelling of patterns, instead it establishes the classes itself based on the statistical regularities of the patterns. The classification or description scheme usually uses one of the following approaches: statistical (or {decision theoretic}), syntactic (or structural), or neural. Statistical pattern recognition is based on statistical characterisations of patterns, assuming that the patterns are generated by a probabilistic system. Structural pattern recognition is based on the structural interrelationships of features. Neural pattern recognition employs the neural computing paradigm that has emerged with neural networks. (1995-09-22)

Βικιπαίδεια

Command pattern

In object-oriented programming, the command pattern is a behavioral design pattern in which an object is used to encapsulate all information needed to perform an action or trigger an event at a later time. This information includes the method name, the object that owns the method and values for the method parameters.

Four terms always associated with the command pattern are command, receiver, invoker and client. A command object knows about receiver and invokes a method of the receiver. Values for parameters of the receiver method are stored in the command. The receiver object to execute these methods is also stored in the command object by aggregation. The receiver then does the work when the execute() method in command is called. An invoker object knows how to execute a command, and optionally does bookkeeping about the command execution. The invoker does not know anything about a concrete command, it knows only about the command interface. Invoker object(s), command objects and receiver objects are held by a client object, the client decides which receiver objects it assigns to the command objects, and which commands it assigns to the invoker. The client decides which commands to execute at which points. To execute a command, it passes the command object to the invoker object.

Using command objects makes it easier to construct general components that need to delegate, sequence or execute method calls at a time of their choosing without the need to know the class of the method or the method parameters. Using an invoker object allows bookkeeping about command executions to be conveniently performed, as well as implementing different modes for commands, which are managed by the invoker object, without the need for the client to be aware of the existence of bookkeeping or modes.

The central ideas of this design pattern closely mirror the semantics of first-class functions and higher-order functions in functional programming languages. Specifically, the invoker object is a higher-order function of which the command object is a first-class argument.